Revista da Estrutura de Aço - REA

Recebido: 02/01/2020 Aprovado: 27/08/2020 Volume 10. Número 1 (abril/2021). p. 100-119 - ISSN 2238-9377

Revista indexada no Latindex e Diadorim/IBICT

CBCA

Eficiência do coeficiente de redução da área líquida (NBR-14762:2010) em ligações de cantoneiras de aço formadas a frio

Luciano M. Bezerra^{1*}, Ronivon S. Pereira², Valdeir F. DePaula³, Jorge Bonilla⁴, Brenda V. Fontes²

¹ Professor, Pós-Graduação em Estruturas e Construção Civil, Universidade de Brasília, Imbz@unb.br

² Aluno, Pós-Graduação em Estruturas e Construção Civil, Universidade de Brasília, ronivon.sp@gmail.com, brendavcf94@gmail.com

³ Professor, Instituto Federal de Educação, Ciência e Tecnologia de Goiás/IFG/Goiânia, valdeir.paula@ifg.edu.br

⁴ Professor, Departamento de Matemática Aplicada, Universidade Ciego de Ávila, Cuba, jorgedbr@unica.cu

Efficiency of the net area reduction coefficient (NBR-14762:2010) on bolted connections of cold formed steel angles

Resumo

Este trabalho apresenta uma investigação analítica e experimental do coeficiente de redução da área líquida, C_t , em cantoneiras de aço, formadas a frio, conectadas por parafusos e submetidas a esforço de tração. São apresentados resultados experimentais disponíveis na literatura e mais 86 ensaios inéditos realizados em cantoneiras de aço fabricado no Brasil. Ao se considerar a conexão parafusada, surge o fenômeno de *shear lag* que reduz a capacidade resistente da cantoneira. Desse modo, para o cálculo da capacidade última da peça tracionada, a ruptura da seção líquida é examinada e o *shear lag* levado em conta através do coeficiente C_t . A partir de análises estatísticas de dados experimentais, compara-se o coeficiente C_t prescrito pela norma Brasileira NBR-14762:2010 com outras formulações.

Palavras-chave: Cantoneiras de aço formadas a frio, shear lag, ruptura da seção líquida.

Abstract

This work presents an analytical and experimental investigation of the net area reduction coefficient, C_t , in cold-formed steel angles, connected by bolts and subjected to tensile effort. Several experimental results available in the literature are presented, and 86 more unpublished tests carried out on steel angles manufactured in Brazil. When considering the bolted connection, the shear lag phenomenon arises and reduces the ultimate capacity of the angle. Thus, to calculate the ultimate capacity of tension member, the collapse of the netsection is examined and the shear lag taken into account with the coefficient C_t . From statistical analyses of the experimental data, the C_t coefficient prescribed by the Brazilian standard NBR-14762:2010 is compared with other formulations.

Keywords: Cold-formed steel angles, shear lag, net-section failure.

* autor correspondente

1 Introdução

O uso do aço na construção civil brasileira tem sido bastante estimulado nos últimos anos, especialmente devido aos inúmeros benefícios que as estruturas metálicas oferecem, tais como; canteiro de obras reduzido, curto prazo para a execução da obra, projetos arquitetônicos arrojados com a existência de grandes vãos e a exigência de um nível mais elevado de qualidade e precisão na construção. Aliados à racionalização dos processos de fabricação e montagem, esses benefícios tornam as estruturas em aço uma grande alternativa para o desenvolvimento que a indústria da construção pode realizar em todo o país. Quando se trata da construção em aço na engenharia civil, normalmente são utilizadas três seções principais de aço para vigas, colunas e tirantes: (a) perfis laminados a quente (b) perfis soldados e (c) perfis formados a frio. Seções de aço formadas a frio são obtidas a partir do dobramento, a frio, de chapas finas de aço. Os métodos para fabricar tais seções formadas a frio permitem uma grande liberdade no processo de concepção, e oferecem aos arquitetos e engenheiros uma grande variedade de formas e tamanhos para as seções de aço.

Antes de 1940, as seções de aço formadas a frio não eram populares na indústria da construção civil. De acordo com Chung e Lau (1999), desde então, as seções de aço formadas a frio têm desempenhado um papel significativo na construção residencial e há uma tendência constante para estender a sua utilização em edifícios de baixa altura. As principais vantagens das seções formadas a frio são: preço acessível, peso leve, alta resistência e rigidez, qualidade uniforme, facilidade de pré-fabricação e produção em massa, economia no transporte e no manuseamento, montagem e instalação rápida e fácil, entre outras. Segundo Yu (2000) nos Estados Unidos, cerca de 15 mil casas de aço foram construídas em 1993 e 75 mil em 1996. No Brasil, o uso de perfis de aço formado a frio também cresceu substancialmente.

Para elementos tracionados de aço formado a frio o comportamento desses se difere de várias maneiras daquele de aços pesados. Para se desenvolver um bom projeto de estruturas de aço formado a frio, as especificações são altamente desejáveis, e a norma dos EUA, Canadá e México, AISI (2016) e a NBR-14762 (2010) no Brasil, são exemplos de normas de construção correspondentes às estruturas de aços formados a frio. De acordo com as especificações destas normas, considerando a capacidade de

101

carga máxima, um dos modos de falhas de elementos unidimensionais, como barras e perfis estruturais, sob tração, é a ruptura da seção líquida da seção transversal do elemento tracionado.

Este artigo busca analisar o comportamento estrutural de ligações parafusadas em cantoneiras de aço formadas a frio, visando através de dados experimentais e estatísticos, obter comparações e prescrição que melhor quantifiquem a resistência à ruptura da seção líquida de conexões sujeitas à redução de resistência pelo coeficiente de redução C_t , que considera o fenômeno *shear lag*. Além dos dados disponíveis na literatura, foram também testados em laboratório mais 86 modelos de cantoneiras em aço COR 420 cujos resultados são aqui apresentados. Com base nesse conjunto de ensaios, as prescrições da NBR-14762 (2010) são aferidas. Uma nova equação para o coeficiente C_t é proposta e investigada diante da prescrição de outras normas.

2 Análise teórica

Entre as verificações mencionadas na literatura, para peças tracionadas, leva-se em consideração também a ruptura da seção líquida em cantoneiras sujeitas ao fenômeno shear lag. Tal fenômeno está ligado diretamente à distribuição não uniforme das tensões quando se conecta uma cantoneira sob tração à chapa de espera, ou chapa *Gusset*. A distância da superfície de contato da chapa de espera ao centro de gravidade da seção da cantoneira causa uma redução na eficiência da peça tracionada e isso é levado em consideração através do coeficiente de redução da seção líquida, C_t (NBR-14762, 2010 e AISI-S100, 2016). A situação apresentada neste artigo se refere à capacidade resistente à ruptura (T_r) da seção líquida na região da ligação em barras sob tração. A norma americana AISI-S100 (2016), no item J6, calcula (T_r) a partir da capacidade nominal de resistência (T_n) multiplicada por um coeficiente $\emptyset = 0,65$. De forma análoga, a NBR-14762 (2010), no item 9.6.2, calcula (T_r) também a partir capacidade nominal, mas dividindo (T_n) por um coeficiente $\gamma = 1,65$. Em resumo, para o AISI-S100 (2016) e a NBR-14762 (2010), a capacidade última da seção líquida, considerando o fenômeno shear lag, é dada, respectivamente, pela Equação (1):

$$T_r = \begin{cases} \phi T_n, \ \phi = 0.65 \text{ (AISI)} \\ T_n/\gamma, \gamma = 1.65 \text{ (NBR)} \end{cases} \text{ sendo } T_n = C_t A_n F_u \tag{1}$$

Onde: C_t é o coeficiente de redução da seção líquida, A_n é área líquida e F_u é a tensão de ruptura do aço da chapa do perfil usado.

Dependendo do tipo da seção do perfil, existe uma expressão diferente para C_t . O cálculo da seção líquida depende da padronização dos furos e se estes estão em linha ou em zig-zag. A expressão matemática na Equação (1) para as cantoneiras (AISI S100-2016) foi estabelecida baseada em pesquisas na Universidade de Missouri-Rolla (EUA), por Laboube e Yu (1995). Esses estudos propuseram a clássica expressão para o coeficiente C_t para cantoneiras, com dois ou mais parafusos na direção da solicitação da força de tração: A Equação (2) foi inicialmente usada na norma americana AISI-S100 (2007) e posteriormente adotada pela NBR-14762 (2010). Atualmente a Norma americana AISI-S100 (2016) utiliza a Equação (3) no lugar da Equação (2). A Equação (3) é uma equação obtida a partir dos ensaios conduzidos por Teh e Gilbert (2013 e 2014).

$$C_t = 1,0 - 1,2 \left(\frac{\bar{x}}{L}\right) < 0,$$
 (2)

$$C_t = \left(\frac{1}{1, 1 + \frac{0,5b1}{b2 + b1} + 2\frac{\bar{x}}{L}}\right)$$
(3)

Onde:

- *b*¹ é a largura total da aba da cantoneira não conectada,
- *b*₂ é a largura total da aba da cantoneira conectada,
- \bar{x} é a distância do plano da aba conectada até o centro de gravidade e,
- *L* é o comprimento total da ligação parafusada.

A Equação (2) leva em consideração o *shear lag*, quando a carga aplicada não é transmitida diretamente a todos os elementos de conexão da seção transversal da peça tracionada. Experiências relatadas na literatura, como (Yip e Cheng, 2000; e Maiola, 2004) demonstram que a Equação (2) pode ser modificada para uma melhor representação do fenômeno *shear lag*. Segundo Kulak e Wu (1997), uma melhor determinação da capacidade final de cantoneiras formadas a frio e conectadas por parafusos passa por uma avaliação mais precisa do fenômeno *shear lag*. Observando a Equação (2), é difícil aceitar que o complexo fenômeno de *shear lag*, no qual o fluxo de tensão varia nas direções longitudinal e transversal da cantoneira dependa somente de $\bar{x} e L$. Nota-se que a Equação (2) não leva em conta outros parâmetros, tais como: as

larguras das abas conectadas e não conectadas, a espessura da cantoneira e o diâmetro do parafuso, entre outros.

3 Verificação do coeficiente de redução da área líquida "C_t"

Nesta seção será apresentada a verificação da expressão adotada pela AISI-S100 (2016), pela NBR-14762 (2010), entre outras, para o cálculo do coeficiente de redução da área líquida C_t para cantoneiras formadas a frio e conectadas por parafusos. A relação entre a capacidade final para a resistência nominal da seção líquida é utilizada para avaliar o coeficiente C_t . A capacidade final experimental é chamada de " T_{exp} ". A resistência da seção líquida nominal " T_n " é obtida através da Equação (1) usando medidas geométricas da cantoneira e propriedades do aço. Dados experimentais mais antigos e disponíveis na literatura foram utilizados para uma avaliação preliminar do coeficiente de redução " C_t " expressa pela Equação (2). Tais dados se referem aos experimentos de Holcomb et al. (1995) e Yip e Cheng (2000) que relatam 42 experimentos em cantoneiras de aço, sob tração e formadas a frio. Já a Equação (3), atualmente utilizada pela AISI S100 (2016), baseia-se em dados recentes de 69 ensaios em cantoneiras de aço formadas a frio submetidas à tração, dos autores Teh e Gilbert (2013) e Teh e Gilbert (2014). Os ensaios de Holcomb et al. (1995) foram realizados na Universidade de Missouri-Rolla, USA; os de Yip e Cheng (2000) foram realizados na Universidade de Alberta, Canadá, e os de Teh e Gilbert (2013, 2014) realizados na Universidade de Wollongong, Austrália.

A Tabela 1 resume os dados dos experimentos acima mencionados e também reporta as propriedades geométricas e dos materiais das cantoneiras ensaiadas. A referida tabela também apresenta o comportamento do coeficiente *C*_t segundo as prescrições da NBR-14762 (2010) para cantoneiras de aço formadas a frio e conectadas por parafusos.

A identificação de cada cantoneira está na Tabela 1, sendo " b_c " a largura da aba conectada; " b_d " a largura da aba não conectada; "t" a espessura uniforme; "d" o diâmetro nominal do parafuso; " \bar{x} " a distância do plano da aba conectada até o centro de gravidade; e "L" o comprimento total da ligação parafusada ao longo da direção da força aplicada. A Figura 1 ilustra uma cantoneira formada a frio.

104

Figura 1- Cantoneira de aço formada a frio com uma conexão de parafusos.

A cantoneira na Figura 1 está ligada por parafusos a uma chapa de espera, ou chapa *Gusset*. Na Tabela 1, as cantoneiras conectam-se com 2, 3, ou 4 parafusos por linha, e a resistência nominal (T_n) é calculada segundo a Eq.(1) com as propriedades geométricas e do material da cantoneira. Com a divisão de (T_n) pela carga final de ruptura (T_r) , obtida experimentalmente $(T_r = T_{exp})$, obtém-se um índice de performance da Eq. (1). Tal índice indica resultado insatisfatório e contra a segurança quando menor que um, $(T_{exp}/T_n < 1,0)$; caso contrário, $(T_{exp}/T_n \ge 1,0)$, o resultado é conservador.

Nº. En- saios	Fonte	Config. do modelo	b _c (mm)	b _d (mm)	t (mm)	Nº Par.	d (mm)	x (mm)	L (mm)	T _{exp} (kN)	F _u (MPa)	A (mm ²)	A _n (mm²)	Tn (kN)	T _{exp} - T _n	T _{exp} - T _n	T _{exp} / T _n	C _t NBR 14762	C _t ,
50105		modelo													(KN)	(%)		(2010)	
1	Hol-	LBN11-1	41,30	41,30	1,067	2	12,70	10,81	38,1	15,80	385	86,3	71,11	18,1	-2,3	-14,3	0,875	0,659	0,577
2	comb	LBN11-2	41,30	41,30	1,067	2	12,70	10,81	38,1	16,20	385	86,3	/1,11	18,1	-1,9	-11,4	0,897	0,659	0,592
3	et al.	LBN11-3	41,30	41,30	1,067	2	12,70	10,81	38,1	15,90	385	86,3	/1,11	18,1	-2,2	-13,5	0,881	0,659	0,581
4	1995	LCN11-1	41,30	41,30	1,067	3	12,70	10,81	76,2	19,60	385	86,3	/1,11	22,7	-3,1	-15,9	0,863	0,830	0,716
5		LCN11-2	41,30	41,30	1,067	3	12,70	10,81	76,2	20,00	385	86,3	71,11	22,7	-2,7	-13,6	0,880	0,830	0,731
5		LCN11-3	41,30	41,30	1,067	3	12,70	10,81	76,2	20,90	385	86,3	/1,11	22,7	-1,8	-8,7	0,920	0,830	0,763
/		LBN12-1	41,30	82,50	1,067	2	12,70	28,06	38,1	17,90	385	130,2	115,07	17,7	0,2	1,0	1,010	0,400	0,404
0		LDN12-2	41,50	82,50	1,007	2	12,70	28,00	30,1 20,1	19,30	305	130,2	115,07	17,7	1,0	0,2	1,089	0,400	0,430
10		LDIN12-5	41,50	82,50 92 E0	1,007	2	12,70	28,00	36,1	21 00	365 20E	120,2	115,07	24.7	0,5	2,0	1,027	0,400	0,411
11		LCN12-1	41,30	82,30 93 E0	1,007	2	12,70	28,00	76,2	21,90	202	120,2	115,07	24,7	-2,0	-12,9	0,000	0,558	0,494
12		LCN12-Z	41,50	41 20	1,007	2	12,70	20,00	20.1	22,00	202	120,2	115,07	24,7	-1,9	-0,4	0,922	0,338	0,515
12		LDN13-1	82,50	41,50	1,007	2	12,70	7,34	30,1	23,30	382	130,2	115,07	34,1 3/1 1	-0,0	-39.6	0,745	0,709	0,571
14		LDN13-2	82,50	41,50	1,007	2	12,70	7,34	76.2	24,40	385	130,2	115,07	34,1	-9,7	-39,0	0,710	0,709	0,551
15		LCN13-2	82 50	41 30	1 067	3	12,70	7 34	76.2	31 70	385	130,2	115.07	39.2	-75	-23.6	0,701	0,004	0,075
16		LEN31-1	41 30	41 30	3 048	2	12,70	11 74	38.1	49.00	366	236.5	193 21	44.6	4.4	9.0	1 099	0,630	0,693
17		I BN31-2	41 30	41 30	3 048	2	12,70	11 74	38.1	48 30	366	236.5	193 21	44.6	37	77	1 084	0,630	0.683
18		LCN31-1	41 30	41 30	3 048	3	12 70	11 74	76.2	58 50	366	236.5	193 21	57.6	0.9	15	1 015	0.815	0.827
19		LCN31-2	41.30	41.30	3.048	3	12,70	11.74	76.2	56,70	366	236.5	193.21	57.6	-0.9	-1.7	0.984	0.815	0.802
20		LBN32-1	41.30	82.50	3.048	2	12.70	29.14	38.1	52.00	366	362.1	318.79	46.7	5.3	10.2	1.114	0.400	0.446
21		LBN32-2	41.30	82.50	3.048	2	12.70	29.14	38.1	56.00	366	362.1	318.79	46.7	9.3	16.7	1.200	0.400	0.480
22		LCN32-1	41.30	82.50	3.048	3	12.70	29.14	76.2	62.90	366	362.1	318.79	63.1	-0.2	-0.4	0.996	0.541	0.539
23		LCN32-2	41,30	82,50	3,048	3	12,70	29,14	76,2	60,20	366	362,1	318,79	63,1	-2,9	-4,9	0,953	0,541	0,516
24		LBN33-1	82,50	41,30	3,048	2	12,70	8,20	38,1	80,90	366	362,1	318,79	86,6	-5,7	-7,0	0,935	0,742	0,693
25		LBN33-2	82,50	41,30	3,048	2	12,70	8,20	38,1	79,60	366	362,1	318,79	86,6	-7,0	-8,7	0,920	0,742	0,682
26		LCN33-1	82,50	41,30	3,048	3	12,70	8,20	76,2	88,30	366	362,1	318,79	101,6	-13,3	-15,7	0,869	0,871	0,757
27		LCN33-2	82,50	41,30	3,048	3	12,70	8,20	76,2	90,90	366	362,1	318,79	101,6	-10,7	-11,8	0,895	0,871	0,779
28	Yip e	12,2	102,00	102,00	2,657	2	19,10	26,72	95,5	135,80	516	530,4	475,69	163,1	-27,3	-20,1	0,833	0,664	0,553
29	Chen.	12,3	102,00	102,00	2,657	3	19,10	26,72	191,0	154,70	516	530,4	475,69	204,3	-49,6	-32,0	0,757	0,832	0,630
30	1997	12,4	102,00	102,00	2,657	3	19,10	26,72	191,0	158,30	516	530,4	475,69	204,3	-46,0	-29,0	0,775	0,832	0,645
31		14,2	50,80	50,80	1,897	2	15,90	13,57	63,3	35,70	327	186,8	153,81	37,4	-1,7	-4,6	0,956	0,743	0,710
32		14,3	50,80	50,80	1,897	3	15,90	13,57	126,6	43,00	327	186,8	153,81	43,8	-0,8	-1,9	0,981	0,871	0,855
33		16,2	38,10	38,10	1,519	2	12,70	10,22	38,1	20,30	317	112,0	90,39	19,4	0,9	4,3	1,045	0,678	0,708
34		16,3	38,10	38,10	1,519	3	12,70	10,22	76,2	24,40	317	112,0	90,39	24,0	0,4	1,5	1,015	0,839	0,852
35	Yip e	A2-2	51,00	51,00	1,214	2	19,10	13,31	63,5	27,90	316	121,4	96,40	22,8	5,1	18,3	1,224	0,749	0,916
36	Chen.	A2-2N	51,00	51,00	1,214	2	19,05	13,31	63,5	24,00	316	121,4	96,46	22,8	1,2	4,9	1,052	0,749	0,787
37	1999	A2-3	51,00	51,00	1,214	3	19,05	13,31	127,0	31,10	316	121,4	96,46	26,6	4,5	14,3	1,167	0,874	1,020
38		A3-2	76,00	76,00	1,214	2	19,05	19,55	63,5	32,80	316	182,1	157,16	31,3	1,5	4,5	1,048	0,630	0,660
39		A3-3	76,00	76,00	1,214	3	19,10	19,55	127,0	37,70	316	182,1	157,10	40,5	-2,8	-7,3	0,932	0,815	0,759
40		A4-2	102,00	102,00	1,214	2	19,05	26,05	63,5	34,00	316	245,2	220,29	35,3	-1,3	-3,9	0,962	0,508	0,488
41		A4-3	102,00	102,00	1,214	3	19,05	26,05	127,0	45,10	316	245,2	220,29	52,5	-7,4	-16,3	0,859	0,754	0,648
42		A4-4	102,00	102,00	1,214	4	19,05	26,05	190,5	49,40	316	245,2	220,29	58,2	-8,8	-17,8	0,849	0,836	0,710

Tabela 1 – Características e comportamento do coeficiente C_t dado pela NBR 14762-2010 das cantoneiras de aço formadas a frio, apresentadas por Holcomb et al. (1995), Yip e Cheng (2000) e Teh e Gilbert (2013 e 2014).

continuação da Tabela 1																			
43	Teh	EA2	40,00	40,00	3,000	2	13,00	10,60	40,0	60,92	580	226,6	187,56	74,2	-13,3	-21,8	0,821	0,682	0,560
44	e	EA4	40,00	40,00	3,000	2	13,00	10,60	60,0	66,36	580	226,6	187,56	85,7	-19,4	-29,2	0,774	0,788	0,610
45	Gil-	EA6	40,00	40,00	3,000	2	13,00	10,60	80,0	67,45	580	226,6	187,56	91,5	-24,0	-35,6	0,737	0,841	0,620
40	2013	EA6 EA10	50,00	50,00	3,000	2	13,00	13,10	40,0	75,25	580	286.6	247,50	67,2 106.0	-13,9	-19,0	0,840	0,007	0,510
47	2015	FA12	50,00	50,00	3,000	2	13,00	13,10	80.0	86 15	580	286.6	247,50	115.4	-29,5	-33,2	0,713	0,738	0,550
49		EA14	60.00	60.00	3.000	2	17.00	15.60	50.0	89.14	580	346.6	295.56	107.2	-18.1	-20.3	0.831	0.626	0.520
50		EA16	60,00	60,00	3,000	2	17,00	15,60	75,0	102,85	580	346,6	295,56	128,6	-25,8	-25,1	0,800	0,750	0,600
51		EA18	60,00	60,00	3,000	2	17,00	15,60	100,0	106,28	580	346,6	295,56	139,3	-33,1	-31,1	0,763	0,813	0,620
52		EA20	75,00	75,00	3,000	2	17,00	19,30	50,0	107,34	580	436,6	385,56	120,0	-12,7	-11,8	0,894	0,537	0,480
53		EA22	75,00	75,00	3,000	2	17,00	19,30	75,0	118,52	580	436,6	385,56	154,6	-36,1	-30,4	0,767	0,691	0,530
54		EA24	75,00	75,00	3,000	2	17,00	19,30	100,0	122,99	580	436,6	385,56	171,8	-48,8	-39,7	0,716	0,768	0,550
55		EA1	40,00	40,00	1,500	2	13,00	10,70	40,0	30,95	605	116,0	96,51	39,7	-8,7	-28,1	0,781	0,679	0,530
57		EAS EAS	40,00	40,00	1,500	2	13,00	10,70	80.0	34,45	605	116.0	96,51	43,9	-11,4	-33,2	0,731	0,780	0,390
58		EA7	50,00	50,00	1,500	2	13,00	13,20	40,0	35,97	605	146,0	126,51	46,2	-10,3	-28,5	0,778	0,604	0,470
59		EA9	50,00	50,00	1,500	2	13,00	13,20	60,0	39,04	605	146,0	126,51	56,3	-17,3	-44,3	0,693	0,736	0,510
60		EA11	50,00	50,00	1,500	2	13,00	13,20	80,0	40,57	605	146,0	126,51	61,4	-20,8	-51,3	0,661	0,802	0,530
61		EA13	60,00	60,00	1,500	2	17,00	15,70	50,0	47,35	605	176,0	150,51	56,8	-9,4	-19,9	0,834	0,623	0,520
62		EA15	60,00	60,00	1,500	2	17,00	15,70	75,0	49,17	605	176,0	150,51	68,2	-19,0	-38,7	0,721	0,749	0,540
63		EA17	60,00	60,00	1,500	2	17,00	15,70	100,0	50,99	605	176,0	150,51	73,9	-22,9	-44,9	0,690	0,812	0,560
64 65		DEA1	40,00	40,00	3,000	2	13,00	10,60	40,0	55,48	580	226,6	187,56	74,2	-18,7	-33,7	0,748	0,682	0,510
66		DEA2	40,00	40,00	3,000	2	13,00	10,60	80,0	68 53	580	220,0	187,50	05,7	-22,0	-33,9	0,730	0,766	0,580
67		DEA4	50.00	50.00	3,000	2	13,00	13.10	40.0	71.79	580	220,0	247.56	87.2	-15.4	-33,5	0.824	0.607	0.500
68		DEA5	50,00	50,00	3,000	2	13,00	13,10	60,0	73,23	580	286,6	247,56	106,0	-32,7	-44,7	0,691	0,738	0,510
69		DEA6	50,00	50,00	3,000	2	13,00	13,10	80,0	74,66	580	286,6	247,56	115,4	-40,7	-54,5	0,647	0,804	0,520
70		DEA7	60,00	60,00	3,000	2	17,00	15,60	50,0	87,43	580	346,6	295,56	107,2	-19,8	-22,7	0,815	0,626	0,510
71		DEA8	60,00	60,00	3,000	2	17,00	15,60	75,0	89,14	580	346,6	295,56	128,6	-39,5	-44,3	0,693	0,750	0,520
72		DEA9	60,00	60,00	3,000	2	17,00	15,60	100,0	101,14	580	346,6	295,56	139,3	-38,2	-37,8	0,726	0,813	0,590
73		AEA1	40,00	40,00	3,000	2	13,00	10,60	40,0	63,09	580	226,6	187,56	74,2	-11,1	-17,6	0,850	0,682	0,580
74		AEA2ª	50,00	50,00	3,000	2	13,00	13,10	80,0	80,41	580	286,6	247,56	115,4	-35,0	-43,5	0,697	0,804	0,560
76		AFA4	60,00	60,00	3,000	2	17,00	15,00	75.0	99.43	580	346.6	295,50	128.6	-10,1	-20,3	0,831	0,020	0,520
77		AEA5	60,00	60,00	3,000	2	17,00	15,60	100,0	106,28	580	346,6	295,56	139,3	-33,1	-31,1	0,763	0,813	0,620
78		UAW1	60,00	40,00	3,000	2	17,00	7,80	50,0	84,71	580	286,6	235,56	111,1	-26,3	-31,1	0,763	0,813	0,620
79		UAW2	60,00	40,00	3,000	2	17,00	7,80	75,0	91,54	580	286,6	235,56	119,6	-28,0	-30,6	0,766	0,875	0,670
80		UAW3	60,00	40,00	3,000	2	17,00	7,80	100,0	94,27	580	286,6	235,56	123,8	-29,6	-31,4	0,761	0,906	0,690
81		UAW4	80,00	40,00	3,000	2	17,00	6,45	50,0	113,14	580	346,6	295,56	144,9	-31,8	-28,1	0,781	0,845	0,660
82		UAW5	80,00	40,00	3,000	2	17,00	6,45	75,0	120,00	580	346,6	295,56	153,7	-33,7	-28,1	0,781	0,897	0,700
83			80,00	40,00	3,000	2	17,00	0,45	50.0	123,42	580	346,6	295,56	137.8	-34,7	-28,1	0,780	0,923	0,720
04 85			75,00	50,00	3,000	2	17,00	9,80	75.0	111 68	580	361.6	310,50	157,0	-40,3	-41,0	0,700	0,703	0,340
86		UAW9	75.00	50,00	3.000	2	17,00	9.80	100.0	113.48	580	361.6	310,56	158.9	-45.5	-40.1	0,714	0.882	0.630
87		UAW11	100,00	50,00	3,000	2	17,00	8,11	75,0	138,65	580	436,6	385,56	194,6	-56,0	-40,4	0,712	0,870	0,620
88		UAW13	60,00	40,00	1,500	2	17,00	7,92	50,0	41,56	605	146,0	120,51	59,1	-17,5	-42,1	0,704	0,810	0,570
89		UAW16	80,00	40,00	1,500	2	17,00	6,57	50,0	58,28	605	176,0	150,51	76,7	-18,4	-31,6	0,760	0,842	0,640
90		UAW17	80,00	40,00	1,500	2	17,00	6,57	75,0	58,28	605	176,0	150,51	81,5	-23,2	-39,8	0,715	0,895	0,640
91		UAW19	75,00	50,00	1,500	2	17,00	9,92	50,0	52,58	605	183,5	158,01	72,8	-20,3	-38,5	0,722	0,762	0,550
92			40,00	60,00	3,000	2	13,00	19,50	40,0	74.66	580	286.6	247,50	59,0 87.6	-12.0	-173	1,012	0,415	0,420
94		UAN3	40,00	60.00	3,000	2	13,00	19 50	80.0	78.97	580	286.6	247,50	101.6	-12,5	-28.6	0,852	0,010	0,520
95		UAN4	40.00	80.00	3.000	2	13.00	28.30	40.0	66.00	580	346.6	307.56	26.9	39.1	59.2	2,450	0.151	0.370
96		UAN5	40,00	80,00	3,000	2	13,00	28,30	60,0	76,70	580	346,6	307,56	77,4	-0,7	-0,9	0,991	0,434	0,430
97		UAN6	40,00	80,00	3,000	2	13,00	28,30	80,0	76,70	580	346,6	307,56	102,7	-26,0	-33,8	0,747	0,576	0,430
98		UAN7	50,00	75,00	3,000	2	13,00	24,00	40,0	76,70	580	361,6	322,56	52,4	24,3	31,7	1,464	0,280	0,410
99		UAN8	50,00	75,00	3,000	2	13,00	24,00	60,0	86,06	580	361,6	322,56	97,3	-11,2	-13,0	0,885	0,520	0,460
100		UAN9	50,00	75,00	3,000	2	13,00	24,00	80,0	86,06	580	361,6	322,56	119,7	-33,7	-39,1	0,719	0,640	0,460
101		UAN11	50,00	100,00	3,000	2	13,00	34,90 34 90	40,0 60.0	70,09	580 580	430,0 436.6	397,50 397 56	-10,8 69.6	00,9 15 7	114,2 18 /	-7,01 1 225	-0,04	0,530
102		UAN12	50,00	100,00	3,000	2	13,00	34,50	80.0	89.93	580	436.6	397,50	109.9	-19.9	-22.2	0.819	0,302	0,370
104	Teh	0L1	50,00	50.00	3,000	2	17.00	13,10	50.0	79.24	580	286.6	235.56	93.7	-14.4	-18.2	0.846	0,686	0.580
105	e	OL2	50,00	50,00	3,000	2	17,00	13,10	100,0	91,54	580	286,6	235,56	115,2	-23,6	-25,8	0,795	0,843	0,670
106	Gil-	OL3a	60,00	60,00	3,000	2	17,00	15,60	50,0	89,14	580	346,6	295,56	107,2	-18,1	-20,3	0,831	0,626	0,520
107	bert	OL3b	60,00	60,00	3,000	2	17,00	15,60	50,0	94,28	580	346,6	295,56	107,2	-13,0	-13,7	0,879	0,626	0,550
108	2014	OL3c	60,00	60,00	3,000	2	17,00	15,60	50,0	90,85	580	346,6	295,56	107,2	-16,4	-18,0	0,847	0,626	0,530
109		OL5a	75,00	75,00	3,000	2	17,00	19,30	50,0	105,10	580	436,6	385,56	120,0	-14,9	-14,2	0,876	0,537	0,470
110		ULSD	75,00	75,00	3,000	2	17,00	19,30	50,0	105,10	580	436,6	385,56	120,0	-14,9	-14,2	0,876	0,537	0,470
111		ULD	75,00	75,00	3,000	2	17,00	19,30	100,0	127,47	580	43b,b	385,56	1/1,8	-44,4	-34,8	0,742	0,768	0,570

A partir dos valores das cargas últimas obtidas dos ensaios em laboratório, pode-se também obter os coeficientes experimentais de redução da seção líquida ($C_{t,exp}$), através da seguinte relação na Equação (4):

$$C_{t,exp} = \frac{T_{exp}}{A_n F_u} \tag{4}$$

A Tabela 1, além dos valores de T_{exp} , também apresenta F_u (tensão última do aço), A (área bruta da seção transversal da cantoneira), A_n (área líquida da seção transversal

da cantoneira) T_n , a diferença $(T_{exp}-T_n)$ e a diferença em porcentagem em relação a T_{exp} e também a razão (T_{exp}/T_n) . Os valores da Equação (2) da NBR 14762 (2010) são ainda relatados na Tabela 1 e o valor ideal do coeficiente de redução $C_{t,exp}$ obtido do valor da carga final experimental T_{exp} dividido por $A_n F_u$, segundo a Equação (4).

A Figura 2 (a) mostra T_{exp} comparado a T_n . Dessa forma pode-se observar que para a maioria dos casos testados, $T_{exp} < T_n$, o que é contra a segurança. A Figura 2 (b) apresenta um gráfico no qual os coeficientes ($C_{t,exp}$), calculados a partir dos dados da Tabela 2, são comparados com a Equação (2) do coeficiente C_t retirado da norma NBR-14762 (2010). O comportamento do coeficiente C_t varia de acordo com o número de parafusos e relação (\bar{x} / L). Observando a Figura 2 (b), os valores de $C_{t,exp}$ abaixo de C_t obtido pela aplicação da equação da NBR-14762 (2010) mostram que a equação de C_t da NBR-14762 (2010) não é conservadora, devendo, portanto, ser adequadamente reavaliada para levar o dimensionamento a um estado seguro. Este artigo propõe na seção 6 outra expressão para o cálculo de C_t .

Figura 2 – (a) Comportamento do coeficiente de redução da área líquida baseados em experimentos apresentados na Tabela 1 e (b) Coeficientes experimentais de redução da seção líquida baseados em ensaios apresentados na Tabela 1.

Com o intuito de avaliar a Equação (2), advinda da Norma AISI-S100 (2007) e adotada pela NBR-14762 (2010), este artigo apresenta 86 ensaios experimentais. Tais ensaios foram feitos em cantoneiras de aço brasileiro, comercialmente conhecido como COR 420, cantoneiras estas formadas a frio e conectadas por parafusos. Tais ensaios, juntamente com os dados de Holcomb et al. (1995), Yip e Cheng (2000) e Teh e Gilbert (2013 e 2014), forneceram informações para que também se possa propor uma equação mais precisa para o coeficiente C_t de redução da seção líquida.

4 Metodologia experimental

Os ensaios experimentais reportados neste trabalho visaram à obtenção de parâmetros para qualificar e quantificar o fenômeno da ruptura da seção líquida em cantoneiras de chapas finas de aço, com conexões parafusadas e sob tração. Portanto, foram preparados perfis com dimensões e configurações reais, os quais foram posteriormente submetidos a ensaios de tração.

Os resultados desses testes foram estatisticamente analisados para obter uma expressão matemática que detalhasse com maior clareza o coeficiente de redução da seção líquida, C_t . Para atingir esse objetivo foram ensaiados 86 perfis. Desses perfis ensaiados, 86 cantoneiras, com duas ou mais seções de parafusos, apresentaram modo de falha de ruptura da seção líquida.

As chapas são de aço COR 420 cuja tensão nominal de escoamento (F_y) é de 300 MPa e a tensão nominal de ruptura (F_u) vale 420 MPa. O aço foi produzido pela Companhia Siderúrgica Nacional (CSN) e tem propriedades anticorrosivas. As cantoneiras ensaiadas têm 600 mm de comprimento e foram produzidas a partir do dobramento, em prensa dobradeira, de chapas de 3000 mm de comprimento, na largura total da seção transversal especificada. Essas chapas foram cortadas com guilhotina.

A Figura 3 (a) mostra a dimensão das seções transversais das cantoneiras de abas iguais. As configurações típicas dos perfis, com uma e com duas linhas de parafusos, são apresentadas na Figura 3 (b). Foram utilizados nos ensaios os modelos com abas iguais e com abas diferentes contendo espessura de 2,25; 3,35 e 3,75 mm. As dimensões das cantoneiras estão representadas na Figura 3 (a). A Tabela 2 reporta as propriedades geométricas das cantoneiras testadas experimentalmente. Para as configurações das ligações, foram executados furos por punção e com uso de brocas, e as cantoneiras foram conectadas com uma linha de parafusos e duas linhas de parafusos, coforme mostrado na Figura 3 (b).

De modo a possibilitar a instalação dos perfis na máquina de ensaios, foram confeccionadas chapas de fixação, nas quais os perfis foram parafusados. Essas chapas foram fabricadas em aço SAE-1040, com espessura de 12,7 mm. Essas chapas foram dimensionadas para sofrerem pequenas deformações, quando comparadas com as

108

sofridas pelos perfis ensaiados, e de modo a garantir que a ruptura da seção líquida ocorresse nos perfis e não nas chapas de fixação.

Em todos os casos, os furos foram realizados com diâmetro 14,2 mm, de modo a permitir uma folga de 1,5 mm para o uso de parafusos de alta resistência ASTM A325 com 12,7 mm de diâmetro. Nos perfis típicos, com apenas uma linha de parafusos, os furos foram executados no eixo da aba, afastados entre si de 38,1 mm, correspondente a 3 diâmetros do parafuso, sendo o primeiro furo distante 31,75 mm da borda do perfil na direção da solicitação, correspondendo a 2,5 diâmetros do parafuso. Para a realização da conexão foi mantido um torque de 100 Nm.

A Figura 4 mostra o esquema geral, o detalhe de uma instalação do transdutor de deslocamento na máquina de ensaios e uma vista geral do equipamento, que é acionado e controlado por computador.

Uma vez parafusadas as cantoneiras nas chapas de fixação, o conjunto é instalado nas garras da prensa eletromecânica EMIC-DL-60000, cuja capacidade máxima de carga de ensaio é de 600 kN.

Figura 4- Esquema geral, detalhe de instalação típica do transdutor de deslocamento nos parafusos das cantoneiras com uma e duas linhas de parafusos e prensa eletromecânica empregada nos ensaios.

O equipamento EMIC é conectado a um microcomputador para aquisição dos dados. A frequência de aquisição desses dados foi de 2Hz e a carga foi aplicada com controle de deslocamento de 2 mm/min. Além das cargas aplicadas, obtidas diretamente da célula de carga da máquina de ensaios, a deformação axial relativa do perfil foi obtida através da instalação do transdutor de deslocamento (LVDT) fixado com parafusos nas extremidades opostas da cantoneira sob ensaio.

A Tabela 2 mostra a identificação e descrição das características especiais dos perfis ensaiados. Assim, de modo a compor a identificação única dos espécimes foi montado um esquema de letras (L), números (N) e uma característica especial (Ce). A forma geral de identificação de uma amostra é, portanto, "LNNN-Ce". Cada modelo, em uma determinada posição, também especificada na Tabela 2.

De um total de 86 espécimes, todas as cantoneiras de aço formadas a frio obtiveram o seu modo de falha, ruptura da seção líquida. Portanto, nesse trabalho, foram utilizados os dados dos espécimes ensaiados para considerar a análise estatística, pois apresentaram modo de falha correspondente à ruptura da seção líquida. A Figura 5 apresenta ruptura da seção líquida ocorrida em cantoneiras com ligação excêntrica em relação ao eixo da aba conectada e, em cantoneiras com uma aba conectada com uma linha de parafusos e duas linhas de parafusos.

Amostra	Identificação especial	Descrição especial							
	Р	Furos executados por puncionamento							
	Т	Parafusos instalados sem aplicação de torque mínimo							
	W	Parafusos instalados sem uso de arruelas							
LNNN-Ce	X1	Furos executados com excentricidade de 19 mm em relação ao eixo da aba, na direção da outra aba.							
	Х3	Furos executados com excentricidade de 24 mm em relação ao eixo da aba, na direção da outra aba.							

Tabela 2 - Identificação e descrição das características especiais dos perfis ensaiados

LNNN-Ce =

• Primeira posição (L) Letra A, B, C, D, E e F representa a dimensão em mm da cantoneira, onde A = 50 x 50, B = 80 x 80, C = 100 x 100, D = 50 x 80, E = 50 x 80 e F = 80 x 100.

• Segunda posição (N) é a espessura da cantoneira 1 = 2,25 mm; 2 = 3,35 mm e 3 = 3,75 mm

• Terceira posição (N) número inteiro de 1-4 representa o número de seções de parafusos ao longo de cada linha.

• Quarta posição (N) número inteiro de 1-2 representa o número de parafusos por linha.

[•] Quinta posição (Ce) característica especial, a letra P, T, W, X1 e X2 após o hífen significa a cantoneira com descrição, i.e., identificação especial.

Figura 5 - Ruptura da seção líquida ocorrida em cantoneiras com ligação excêntrica em relação ao eixo da aba conectada e, em cantoneiras com uma aba conectada com uma linha de parafusos e duas linhas de parafusos.

5 Resultado dos testes

Dos 86 espécimes testados, todos têm dois ou mais parafusos na direção da solicitação conforme recomenda a NBR-14762 (2010) e a AISI-S100 (2016). Os modelos testados apresentaram, como principal modo de falha, a ruptura na seção líquida.

Os resultados apresentados na Tabela 3 demonstraram que para um grande número de espécimes, o valor experimental é confiável, onde T_{exp} é menor do que a seção nominal líquida e a força T_n , cujo cálculo está de acordo com a Equação (1).

Nesses casos, como $T_{exp} / T_n < 1$, o coeficiente de redução da seção líquida experimental $C_{t,exp}$ é inferior ao coeficiente de redução da seção líquida da AISI-S100 (2016) da Equação (3). O C_t da NBR-14762 (2010) baseia-se apenas em duas variáveis existentes na equação: excentricidade da ligação (\bar{x}); e o comprimento da ligação parafusada (L). Os resultados na Tabela 3 demonstram claramente que a ruptura da seção líquida pode também depender de outras variáveis. Estas outras variáveis podem ser incorporadas em uma equação alternativa para " C_t ", que pode ser obtida através da estatística e regressão múltipla, como é feito na próxima seção. A Tabela 3 apresenta o comportamento do coeficiente da seção líquida dos testes experimentais conduzidos no Laboratório de Construção Civil do Instituto Federal de Educação, Ciência e Tecnologia de Goiás (IFG-Câmpus Goiânia) e no Laboratório de Estruturas do Departamento de Engenharia Civil da Universidade de Brasília (UnB).

Tabela 3 - Dados geométricos das cantoneiras e coeficiente de redução da seção líquida dos testes experimentais (*C_{t exp}*)

cxperimentals (ot exp)												
Nº	Dorfil	t	\bar{x}	L	T_{exp}	Fu	А	An	T_n	T_{exp}	C	
Ensaios	Perm	(mm)	(mm)	(mm)	(kN)	(MPa)	(mm²)	(mm²)	(kN)	T_n	$C_{t exp}$	
1	A121	2.23	13.53	38.1	54.83	502	214.83	183.16	52.76	1.039	0.596	
2	A131	2.26	13.54	76.2	64.59	502	217.61	185.51	73.27	0.882	0.694	
3	A141	2.34	13.58	114.3	78.06	502	225.00	191.77	82.54	0.946	0.811	
4	A221	3.51	14.13	38.1	89.15	463	330.75	280.91	72.18	1.235	0.685	
5	A231	3.49	14.12	76.2	97.76	463	328.98	279.42	100.60	0.972	0.756	
6	A241	3.57	14.15	114.3	102.00	463	336.05	285.36	112.49	0.907	0.772	
7	A321	3.70	14.22	38.1	81.65	457	347.50	294.96	74.42	1.097	0.606	
8	A331	3.72	14.23	76.2	97.46	457	349.26	296.43	105.11	0.927	0.719	
9	A341	3.66	14.20	114.3	109.57	457	343.98	292.01	113.55	0.965	0.821	
10	B131	2.40	21.10	76.2	93.94	502	374.53	340.45	114.12	0.823	0.550	
11	B141	2.26	21.04	114.3	92.01	502	353.21	321.11	125.59	0.733	0.571	
12	B221	3.54	21.63	38.1	108.14	463	545.80	495.54	73.13	1.479	0.471	
13	B231	3.55	21.63	76.2	130.50	463	547.29	496.88	151.69	0.860	0.567	
14	B241	3.68	21.69	114.3	142.30	463	566.54	514.29	183.89	0.774	0.598	
15	B321	3.86	21.78	38.1	115.37	457	593.11	538.30	77.25	1.493	0.469	
16	B331	3.81	21.76	76.2	140.25	457	585.74	531.64	159.70	0.878	0.577	
17	B341	3.76	21.73	114.3	142.92	457	578.36	524.97	185.18	0.772	0.596	
18	B122	2.43	21.11	38.1	98.39	502	379.10	310.08	52.16	1.886	0.632	
19	B132	2.43	21.11	76.2	103.96	502	379.10	310.08	103.91	1.000	0.668	
20	B142	2.43	21.11	114.3	109.18	502	379.10	310.08	121.16	0.901	0.701	
21	B222	3.50	21.61	38.1	119.38	463	539.87	440.47	65.13	1.833	0.585	
22	B232	3.53	21.62	76.2	128.95	463	544.32	444.07	135.60	0.951	0.627	
23	B242	3.53	21.62	114.3	131.62	463	544.32	444.07	158.94	0.828	0.640	
24	C131	2.25	26.03	76.2	110.31	502	441.68	409.73	121.37	0.909	0.536	
25	C141	2.56	26.17	114.3	115.23	502	501.23	464.88	169.25	0.681	0.494	
26	C221	3.51	26.61	38.1	122.18	463	681.75	631.91	47.36	2.580	0.418	
27	C231	3.49	26.60	76.2	152.15	463	677.98	628.42	169.08	0.900	0.523	
28	C241	3.69	26.70	114.3	164.91	463	715.62	663.22	220.99	0.746	0.537	
29	C331	3.91	26.80	76.2	160.51	457	756.87	701.35	185.24	0.866	0.501	
30	C341	3.87	26.78	114.3	179.14	457	749.39	694.43	228.13	0.785	0.564	
31	C122	2.66	26.22	38.1	99.56	502	520.37	444.83	38.89	2.560	0.446	

Continuação na próxima pag...

CO	ntinuação da Ta	ibela 3									
32	C132	2.42	26.11	76.2	115.90	502	474.38	405.65	119.90	0.967	0.569
33	C142	2.45	26.12	114.3	122.42	502	480.13	410.55	149.58	0.818	0.594
34	C222	3.58	26.64	38.1	139.59	463	694.94	593.26	44.21	3.158	0.508
35	C232	3.59	26.65	76.2	154.20	463	696.82	594.86	159.83	0.965	0.560
36	C242	3.56	26.64	114.3	161.75	463	691.17	590.07	196.79	0.822	0.592
37	C322	3.86	26.77	38.1	143.98	457	747.51	637.89	45.72	3.149	0.494
38	C332	3.85	26.77	76.2	170.16	457	745.64	636.30	168.20	1.012	0.585
39	(342	3 84	26.76	114 3	171 61	457	743 77	634 71	208 57	0.823	0.592
40	D121	2.0 4 2.41	25.70	38.1	62.06	502	303 75	269 53	200.57	2 464	0.352
40	D121	2.41	25.04	76.2	71.06	502	306.20	205.55	80.87	0.879	0.521
41	D131	2.45	25.05	11/ 2	79.40	502	207.65	264 12	06.65	0.875	0.521
42	E121	2.30	23.02	20 1	64.26	502	257.05	204.13	1E 1/	4 251	0.391
45	E121 F121	2.49	24.07	50.1 76.2	76 70	502	276.06	227.95	-15.14	-4.251	0.591
44	E131	2.58	34.72	70.2		502	3/0.00	339.42	100.22	0.993	0.450
45	E141	2.38	34.61	114.3	81.55	502	347.69	313.89	100.32	0.813	0.517
46	F121	2.34	28.90	38.1	68.57	502	412.20	378.97	17.08	4.015	0.360
47	F131	2.34	28.90	/6.2	80.77	502	412.20	3/8.9/	103.66	0.779	0.425
48	F141	2.30	28.88	114.3	89.25	502	405.31	372.65	130.35	0.685	0.477
49	F122	2.46	28.96	38.1	92.24	502	432.85	362.99	16.01	5.761	0.506
50	F132	2.48	28.97	76.2	99.44	502	436.29	365.86	99.87	0.996	0.541
51	F142	2.38	28.92	114.3	107.59	502	419.09	351.50	122.88	0.876	0.610
52	D121-L	2.29	10.61	38.1	67.01	502	289.08	256.56	85.75	0.781	0.520
53	D131-L	2.26	10.59	76.2	77.51	502	285.41	253.31	105.95	0.732	0.610
54	D141-L	2.24	10.58	114.3	85.42	502	282.95	251.15	112.07	0.762	0.678
55	D122-L	2.21	10.57	38.1	78.61	502	279.27	216.51	72.50	1.084	0.723
56	D132-L	2.23	10.58	76.2	86.61	502	281.73	218.40	91.37	0.948	0.790
57	D142-L	2.23	10.58	114.3	92.73	502	281.73	218.40	97.46	0.951	0.846
58	E131-L	2.25	9.29	76.2	89.63	502	329.18	297.23	127.38	0.704	0.601
59	E141-L	2.29	9.31	114.3	102.71	502	334.88	302.36	136.95	0.750	0.677
60	E122-L	2.27	9.30	38.1	81.67	502	332.03	267.56	94.97	0.860	0.608
61	E132-L	2.29	9.31	76.2	93.41	502	334.88	269.85	115.60	0.808	0.690
62	E142-L	2.27	9.30	114.3	96.06	502	332.03	267.56	121.20	0.793	0.715
63	B221-X1	3.57	21.64	38.1	111.27	463	550.25	499.56	73.65	1.511	0.481
64	B231-X1	3.57	21.64	76.2	131.88	463	550.25	499.56	152.47	0.865	0.570
65	B241-X1	3.57	21.64	114.3	144.53	463	550.25	499.56	178.75	0.809	0.625
66	C221-X3	3.63	26.67	38.1	122.24	463	704.34	652.80	48.36	2.528	0.404
67	C231-X3	3.63	26.67	76.2	149.23	463	704.34	652.80	175.30	0.851	0.494
68	C241-X3	3.63	26.67	114.3	169.70	463	704.34	652.80	217.62	0.780	0.561
69	B131-P	2.24	21.03	76.2	76.06	502	327.75	295.95	99.36	0.765	0.512
70	B141-P	2.24	21.03	114.3	85.24	502	327.75	295.95	115.77	0.736	0.574
71	B221-P	3 51	21.60	38.1	116 25	463	506.25	456 41	67.42	1 724	0.550
72	B231-P	3 37	21.02	76.2	133.49	463	486.83	438.98	134.27	0 994	0.550
72	B2/11-D	3 /0	21.55	11/1 3	1/1 /2	463	503 /8	453.00	162.48	0.554	0.673
73	B321_D	3 75	21.01	28.1	106.63	405	530 30	499.92	70 11	1 5 2 1	0.075
75	B331-D	3.75	21.75	76.2	127.85	457	538.01	181 90	1/5 80	0.877	0.400
75	B331-1	2 70	21.72	11/ 2	125.09	457	5// 80	404.00	172 17	0.0795	0.577
70 77	B221_\//	3.13	21.75	20 1	110 /2	457	550 11	491.07 507.60	7/ 61	1 601	0.000
// 70	DZZI-VV	2.05	21.07	30.1 76 0	122 54	405	550 14	507.00	15/01	1.001	0.508
/ ð 70		3.03	21.0/	114.2	150.30	403	559.14	507.00	102 40	0.003	0.00
19	DZ41-VV	5.05 2 F 4	21.00	20 1	125 04	403	202.10	627 1 A	102.40	0.024	0.03/
80	C221-W	3.54	20.03	38.1	125.94	403	712 74	03/.14	47.57	2.047	0.427
81	C231-W	3.68	26.69	/6.2	155.40	463	/13./4	661.49	1/7.54	0.875	0.507
82	C241-W	3.60	26.65	114.3	1/5.38	463	698.70	647.58	215.94	0.812	0.585
83	A121-T	2.38	13.60	38.1	56.84	502	228.69	194.89	55.93	1.016	0.581
84	A131-T	2.41	13.61	76.2	65.62	502	231.45	197.23	77.79	0.844	0.663
85	A221-T	3.53	14.14	38.1	83.92	463	332.52	282.39	72.52	1.157	0.642
86	A231-T	3.52	14.13	76.2	96.28	463	331.64	281.65	101.39	0.950	0.738

Tabela 4 – Verificação do coeficiente de redução da seção líquida dos testes experimentais (Ct) dado pelas Equações (2), (3), (7) e (6) aplicados aos ensaios experimentais efetuados no IFG e na UnB

Nº Ensaios	Perfil	C _{t exp}	C _t NBR 14762- (2010)	Δ1	Δ1 (%)	C _t AISI- (2016)	Δ2	Δ ₂ (%)	<i>C_{t,prop}</i> UnB Proposto	Δ3	∆₃ (%)	C _t UnB (2008	Δ ₄	Δ4 (%)
1	A121	0.596	0.574	0.022	3.7%	0.485	0.111	18.6%	0.605	-0.009	-1.5%	0.672	-0.076	-12.7%
2	A131	0.694	0.787	-0.093	-13.4%	0.586	0.108	15.5%	0.658	0.036	5.2%	0.719	-0.025	-3.6%
3	A141	0.811	0.857	-0.046	-5.7%	0.630	0.181	22.3%	0.679	0.132	16.2%	0.737	0.074	9.1%
4	A221	0.685	0.555	0.130	19.0%	0.478	0.207	30.2%	0.665	0.020	2.9%	0.711	-0.026	-3.8%
5	A231	0.756	0.778	-0.022	-2.9%	0.581	0.175	23.1%	0.718	0.038	5.1%	0.759	-0.003	-0.4%
6	A241	0.772	0.851	-0.079	-10.3%	0.626	0.146	18.9%	0.740	0.032	4.2%	0.777	-0.005	-0.7%
7	A321	0.606	0.552	0.054	8.9%	0.477	0.129	21.3%	0.674	-0.068	-11.2%	0.717	-0.111	-18.3%

Continuação na próxima pag...

continuação da Tabela 4 8														
8	A331	0.719	0.776	-0.057	-7.9%	0.580	0.139	19.3%	0.729	-0.010	-1.4%	0.766	-0.047	-6.6%
9	A341	0.821	0.851	-0.030	-3.6%	0.626	0.195	23.8%	0.744	0.077	9.4%	0.780	0.041	4.9%
10	B131	0.550	0.668	-0.118	-21.4%	0.525	0.025	4.5%	0.533	0.017	3.2%	0.555	-0.005	-1.0%
11	B141	0.571	0.779	-0.208	-36.4%	0.582	-0.011	-1.9%	0.555	0.016	2.8%	0.577	-0.006	-1.0%
12	B221	0.471	0.319	0.152	32.3%	0.402	0.069	14.6%	0.484	-0.013	-2.8%	0.504	-0.033	-7.0%
13	B231	0.567	0.659	-0.092	-16.3%	0.521	0.046	8.0%	0.567	0.000	0.1%	0.578	-0.011	-2.0%
14	B241	0.598	0.772	-0.174	-29.1%	0.578	0.020	3.3%	0.598	0.000	0.0%	0.605	-0.007	-1.2%
15	B321	0.469	0.314	0.155	33.0%	0.401	0.068	14.5%	0.493	-0.024	-5.1%	0.510	-0.041	-8.7%
16	B331 D241	0.577	0.657	-0.080	-13.9%	0.521	0.056	9.8%	0.574	0.003	0.5%	0.583	-0.006	-1.1%
10	B341 B122	0.590	0.772	-0.176	-29.5%	0.578	0.018	3.0%	0.600	-0.004	-0.7%	0.007	-0.011	-1.8%
10	B122 B132	0.052	0.555	0.297	47.0%	0.407	0.225	55.0% 21.4%	0.455	0.179	20.5%	0.464	0.140	25.4% 16.8%
20	B132 B142	0.000	0.008	-0.077	-11.0%	0.525	0.145	17.0%	0.554	0.134	20.1%	0.550	0.112	17.3%
20	B272	0.585	0.319	0.266	45.4%	0.302	0.182	31.2%	0.483	0.102	17.4%	0.500	0.082	14.0%
22	B232	0.627	0.660	-0.033	-5.2%	0.522	0.102	16.8%	0.566	0.061	9.7%	0.578	0.049	7.9%
23	B242	0.640	0.773	-0.133	-20.8%	0.579	0.061	9.6%	0.594	0.046	7.3%	0.602	0.038	5.9%
24	C131	0.536	0.590	-0.054	-10.1%	0.492	0.044	8.2%	0.476	0.060	11.3%	0.489	0.047	8.8%
25	C141	0.494	0.725	-0.231	-46.8%	0.553	-0.059	-12.0%	0.516	-0.022	-4.4%	0.523	-0.029	-5.9%
26	C221	0.418	0.162	0.256	61.3%	0.364	0.054	12.9%	0.404	0.014	3.4%	0.417	0.001	0.2%
27	C231	0.523	0.581	-0.058	-11.1%	0.488	0.035	6.6%	0.504	0.019	3.5%	0.508	0.015	2.9%
28	C241	0.537	0.720	-0.183	-34.0%	0.550	-0.013	-2.5%	0.543	-0.006	-1.1%	0.541	-0.004	-0.8%
29	C331	0.501	0.578	-0.077	-15.4%	0.487	0.014	2.8%	0.514	-0.013	-2.6%	0.514	-0.013	-2.6%
30	C341	0.564	0.719	-0.155	-27.5%	0.550	0.014	2.5%	0.547	0.017	3.0%	0.544	0.020	3.5%
31	C122	0.446	0.174	0.272	60.9%	0.367	0.079	17.8%	0.385	0.061	13.6%	0.405	0.041	9.1%
32	C132	0.569	0.589	-0.020	-3.5%	0.491	0.078	13.7%	0.479	0.090	15.7%	0.491	0.078	13.7%
33	C142	0.594	0.726	-0.132	-22.2%	0.553	0.041	6.8%	0.513	0.081	13.6%	0.521	0.073	12.2%
34	(222	0.508	0.161	0.347	58.3%	0.364	0.144	28.4%	0.405	0.103	20.2%	0.418	0.090	17.7%
35	C232	0.560	0.580	-0.020	-3.0%	0.488	0.072	12.9%	0.507	0.053	9.5%	0.509	0.051	9.1%
30 27	C242	0.592	0.720	-0.128	-21.7%	0.251	0.041	7.0%	0.540	0.052	0.0% 16.9%	0.539	0.053	8.9% 14.6%
37	(332	0.494	0.137	0.337	1 1%	0.303	0.131	20.3 <i>%</i>	0.411	0.083	12.3%	0.422	0.072	12 3%
39	C342	0.592	0.719	-0.127	-21.5%	0.550	0.042	7.1%	0.547	0.045	7.7%	0.544	0.048	8.2%
40	D121	0.459	0.186	0.273	59.4%	0.362	0.097	21.2%	0.577	0.017	3.6%	0.616	-0.033	-7.2%
41	D131	0.521	0.593	-0.072	-13.8%	0.479	0.042	8.0%	0.617	-0.021	-4.0%	0.652	-0.060	-11.5%
42	D141	0.591	0.729	-0.138	-23.3%	0.538	0.053	9.0%	0.630	0.020	3.4%	0.664	-0.017	-2.8%
43	E121	0.391	-0.092	0.483	123.5%	0.307	0.084	21.4%	0.575	0.064	16.3%	0.615	0.025	6.3%
44	E131	0.450	0.453	-0.003	-0.7%	0.427	0.023	5.2%	0.616	-0.014	-3.0%	0.651	-0.038	-8.3%
45	E141	0.517	0.637	-0.120	-23.1%	0.490	0.027	5.1%	0.629	0.019	3.7%	0.664	-0.003	-0.7%
46	F121	0.360	0.090	0.270	75.1%	0.345	0.015	4.0%	0.604	0.001	0.4%	0.631	-0.026	-7.3%
47	F131	0.425	0.545	-0.120	-28.2%	0.468	-0.043	-10.1%	0.617	-0.044	-10.2%	0.642	-0.060	-14.1%
48	F141	0.477	0.697	-0.220	-46.1%	0.531	-0.054	-11.3%	0.569	-0.027	-5.7%	0.599	-0.040	-8.4%
49	F122	0.506	0.088	0.418	82.6%	0.345	0.161	31.8%	0.605	0.144	28.5%	0.631	0.117	23.2%
50	F132	0.541	0.544	-0.003	-0.5%	0.468	0.073	13.5%	0.616	0.068	12.6%	0.642	0.053	9.8%
51	F142	0.610	0.696	-0.086	-14.2%	0.531	0.079	13.0%	0.442	0.104	17.0%	0.492	0.091	15.0%
52	D121-L	0.520	0.666	-0.146	-28.0%	0.541	-0.021	-4.0%	0.542	-0.057	-11.1%	0.581	-0.096	-18.5%
53	D131-L	0.610	0.833	-0.223	-30.0%	0.637	-0.027	-4.4%	0.571	-0.007	-1.1%	0.608	-0.042	-0.9%
54	D141-L	0.078	0.889	-0.211	-31.1%	0.677	0.001	0.2%	0.327	0.048	7.1%	0.300	0.014	2.1% 1/ Q%
56	D132-L	0.723	0.833	-0.042	-5 5%	0.637	0 152	19.1%	0.498	0.174	20.4%	0.520	0 1 3 0	17.5%
57	D132 L	0.846	0.889	-0.043	-5.1%	0.677	0.169	20.0%	0.359	0.217	25.6%	0.386	0.182	21.6%
58	E131-L	0.601	0.854	-0.253	-42.0%	0.662	-0.061	-10.2%	0.469	-0.003	-0.5%	0.485	-0.030	-4.9%
59	E141-L	0.677	0.902	-0.225	-33.3%	0.700	-0.023	-3.3%	0.504	0.060	8.9%	0.517	0.035	5.2%
60	E122-L	0.608	0.707	-0.099	-16.3%	0.570	0.038	6.3%	0.362	0.039	6.4%	0.389	0.009	1.4%
61	E132-L	0.690	0.853	-0.163	-23.7%	0.662	0.028	4.1%	0.473	0.085	12.3%	0.488	0.059	8.5%
62	E142-L	0.715	0.902	-0.187	-26.2%	0.700	0.015	2.2%	0.506	0.099	13.8%	0.519	0.073	10.3%
63	B221-X1	0.481	0.318	0.163	33.8%	0.402	0.079	16.4%	0.485	-0.004	-0.8%	0.505	-0.024	-4.9%
64	B231-X1	0.570	0.659	-0.089	-15.7%	0.521	0.049	8.5%	0.567	0.003	0.5%	0.578	-0.008	-1.5%
65	B241-X1	0.625	0.773	-0.148	-23.6%	0.578	0.047	7.4%	0.595	0.030	4.8%	0.603	0.022	3.5%
66	C221-X3	0.404	0.160	0.244	60.4%	0.364	0.040	10.0%	0.406	-0.002	-0.5%	0.419	-0.015	-3.7%
67	C231-X3	0.494	0.580	-0.086	-17.4%	0.488	0.006	1.3%	0.508	-0.014	-2.8%	0.510	-0.016	-3.2%
68	C241-X3	0.561	0.720	-0.159	-28.3%	0.550	0.011	1.9%	0.542	0.019	3.5%	0.540	0.021	3.7%
69	B131-P	0.512	0.569	-0.157	-30.6%	0.526	-0.014	-2.7%	0.528	-0.016	-3.1%	0.552	-0.040	-7.9%
70	B141-P	0.574	0.779	-0.205	-35.8%	0.582	-0.008	-1.4%	0.555	0.019	5.4%	0.576	-0.002	-0.4%
/⊥ 70	0221-P מ 2021 ח	0.550	0.319	0.231	42.0% _0.6%	0.402	0.148	20.8% 20.5%	0.483	0.067	17 C0/	0.504	0.047	0.5% 12.6%
72 72	B221-P B241-D	0.037	0.001	-0.004	-0.0%	0.522	0.132	20.5% 14.0%	0.201	0.090	12 0%	0.575	0.082	10.6%
74	B321-P	0,480	0.316	0.164	34.3%	0.402	0.079	16.4%	0.490	-0.010	-2.1%	0.508	-0.028	-5.8%
75	B331-P	0.577	0.658	-0.081	-14.0%	0.521	0.056	9.7%	0.572	0.005	0.8%	0.582	-0.005	-0.8%
76	B341-P	0.606	0.772	-0.166	-27.3%	0.578	0.028	4.6%	0.601	0.005	0.8%	0.608	-0.001	-0.2%
77	B221-W	0.508	0.317	0.191	37.5%	0.402	0.106	20.9%	0.487	0.021	4.2%	0.506	0.002	0.5%

Continuação na próxima pag...

	cor	ntinuação d	a Tabela 4	4											
	78	B231-W	0.568	0.659	-0.091	-16.0%	0.521	0.047	8.2%	0.569	-0.001	-0.2%	0.580	-0.012	-2.0%
	79	B241-W	0.637	0.772	-0.135	-21.3%	0.578	0.059	9.2%	0.597	0.040	6.3%	0.605	0.032	5.1%
	80	C221-W	0.427	0.161	0.266	62.2%	0.364	0.063	14.8%	0.404	0.023	5.3%	0.418	0.009	2.2%
	81	C231-W	0.507	0.580	-0.073	-14.3%	0.488	0.019	3.8%	0.509	-0.002	-0.4%	0.511	-0.004	-0.7%
	82	C241-W	0.585	0.720	-0.135	-23.1%	0.551	0.034	5.9%	0.541	0.044	7.5%	0.540	0.045	7.7%
	83	A121-T	0.581	0.572	0.009	1.6%	0.485	0.096	16.6%	0.612	-0.031	-5.4%	0.676	-0.095	-16.4%
	84	A131-T	0.663	0.786	-0.123	-18.5%	0.586	0.077	11.7%	0.665	-0.002	-0.4%	0.724	-0.061	-9.2%
	85	A221-T	0.642	0.555	0.087	13.6%	0.478	0.164	25.6%	0.666	-0.024	-3.7%	0.712	-0.070	-10.9%
	86	A231-T	0.738	0.777	-0.039	-5.3%	0.581	0.157	21.3%	0.719	0.019	2.6%	0.760	-0.022	-2.9%
	Erro re	esidual Máx	imo		0.483	123.5%		0.225	35.6%		0.217	28.5%		0.182	23.4%
	Erro re	esidual Mín	imo		-0.253	-46.8%		-0.061	-12.0%		-0.068	-11.2%		-0.111	-18.5%
	Média	de erro res	sidual		-0.019	-0.8%		0.069	11.3%		0.036	5.7%		0.015	2.0%
	Desvic	o padrão de	erro resi	dual = σ	0.169	34.0%		0.066	10.4%		0.055	8.7%		0.057	9.4%
	Δ1 = D	iferença do	o (Ctexp -	Ct NBR14	762 (2010	D)) & ∆	1(%) = 10	00* ∆1/ <i>C</i>	t exp						
$\Delta 2$ = Diferença do (Ctexp - Ct AISI (2016)) & $\Delta 2(\%) = 100^* \Delta 2/C_{texp}$															
$\Delta 3 = \text{Diferença}$ do (Ctexp - Ct UnB Proposto) & $\Delta 3(\%) = 100^* \Delta 3/C_{texp}$															
$\Delta 4 = \text{Diference do} (\text{Ctexp} - \text{Ct UnB} (2008)) \qquad \qquad \& \Delta 4(\%) = 100^{\circ} \Delta 4/C_{t exp}$															

6 Análise estatística e resultados experimentais

A distribuição de tensões na vizinhança da ligação parafusada é muito complexa, com altos gradientes de tensão na região dos conectores. Essa é uma região de tensão não uniforme, de alta concentração, formação de zonas plásticas e mudança de direção das tensões. O fenômeno shear lag reduz a capacidade resistente da peça sob tração tem como modo de falha a ruptura da seção líquida na ligação. É importante para os engenheiros utilizar expressões apropriadas para o cálculo do coeficiente de redução da seção líquida, C_t . As informações fornecidas nas Tabelas 1, 3 e 4 demonstram como a eficiência da conexão de parafusos muda quando certas variáveis são modificadas. As informações apresentadas nas Tabelas 1 e 2 são importantes para identificar as dimensões dos espécimes ensaiados, aba conectada, números de parafusos e disposições dos parafusos. De fato, ao estudar as diversas variáveis, pode-se observar que a largura da aba não conectada (b_d) e o número de parafusos por seção (n), além da tradicional excentricidade de conexão ($ar{x}$) e o comprimento de conexão (L), controlam o coeficiente de redução da seção líquida experimental C_{t,exp}, identificado na décima segunda coluna da Tabela 3 que reporta os experimentos feitos na UnB. Portanto, outras variáveis como (b_d) largura da aba não conectada, (b_c) largura da aba conectada e \bar{x}/L na Equação (2) podem ser consideradas na construção de uma expressão para " C_t ". A expressão alternativa proposta depende de mais de uma variável independente e, por isso, foi aplicada regressão múltipla da estatística.

Na estatística, regressão múltipla é usada para estabelecer o efeito de cada variável independente, quando outra variável independente é mantida constante (Kennedy e

Neville, 1986). Aqui uma regressão linear múltipla é conduzida com o objetivo geral de confirmar se existe uma correlação entre uma determinada variável independente e o coeficiente de redução da seção líquida (*C*t).

A equação proposta para C_t basea-se nas variáveis independentes $X_{i,1}, X_{i,2}, X_{i,3}, \ldots, X_{i,(p-1)}$ associados à geometria da cantoneira e às características da conexão parafusada. Kennedy e Neville, (1986) e Spiegel et al. (2000) definem a equação proposta para a regressão linear: $C_{ti} = b_0 + b_1 X_{i,1} + b_2 X_{i,2} + \cdots + b_{p-1} X_{i,(p-1)} + \varepsilon_i$. Portanto, os 86 dados são analisados, e os parâmetros significativos foram considerados para explicar os resultados experimentais através do estudo estatístico dos testes na Tabela 3.

A análise estatística realizada com o software Statistica, versão 6.0 de 2001, permitiunos identificar que alguns parâmetros desempenham um papel importante na computação do fator de eficiência da seção líquida experimental ($C_{t,exp}$). Apenas aquelas variáveis que se mostraram estatisticamente significativas foram incorporadas ao modelo, a saber: \bar{x} é a distância do plano da aba conectada até o centro de gravidade, L é o comprimento total da ligação parafusada, b_c é a largura total da aba conectada, b_d é a largura total da aba desconectada, b_{cn} é a largura líquida da aba conectada, e t é a espessura da aba do perfil. Nota-se que além das formulações para C_t prescritas pela NBR-14762 (2010), Equação (2), e AISI-S100 (2016), Equação (3), essa pesquisa também avaliou uma formulação alternativa de C_t , proposta por De Paula, Bezerra e Matias (2008), expressa pela Equação (6), baseada então em 66 ensaios em cantoneiras de aço formadas a frio.

$$C_{t(2008)} = 1,19 - 0,26(\bar{x}/L) - (0,63b_{cn} + 0,17b_d - 0,47d - 1,70t)/b_c$$
(6)

Voltando aos 86 experimentos reportados na Tabela 3, ao final das etapas de remoção dos extremos e de avaliação dos resíduos, permaneceram ainda 80 casos, ou ensaios. A análise desses casos produziu um modelo altamente significativo (p<0.001), sendo po p-value, notando-se que o p-value é uma medida estatística de evidência contra a hipótese nula. Quanto menor o p-value, mais evidência se tem. Além disso, o coeficiente de determinação (R^2) é de 89,6%, o coeficiente de correlação múltiplo (R) de 94,6%, e o erro padrão da estimativa de C_t igual a 0,0296 constitui alta significância estatística dos parâmetros testados (estatística p). Avaliadas as informações e com base nos resultados pode-se finalmente escrever uma nova proposta para o coeficiente de redução da seção líquida, ou seja ($C_{t,prop}$) em função das grandezas apresentadas:

$$C_{t,prop} = 1,12 - 0,29(\bar{x}/L) - (0,55b_{cn} + 0,13b_d - 2,51t)/b_c$$
(7)

A viabilidade dessa equação está estaticamente verificada através dos valores inseridos no software Statistica. A Equação (7) é aplicada para os modelos testados experimentalmente e os resultados são mostrados na Tabela 3.

As Figuras 6 e 7 apresentam as diferenças de comportamento do coeficiente da seção líquida dos testes experimentais $C_{t,exp}$ em relação às equações da NBR-14762 (2010) ou Equação (2), AISI-S100 (2016) ou Equação (3), Equação (6) sugerida em 2008 por De Paula, Bezerra e Matias e a Equação (7) agora proposta nesse artigo – ver Tabela 4. Nota-se nas Figuras 6 e 7 que quanto mais próximo de zero for a diferença entre o valor calculado e o valor obtido experimentalmente para o coeficiente de redução da área líquida C_t , melhor é a equação do cálculo de C_t . Dessa forma, com o menor desvio padrão entre os valores calculados e os experimentais apresentados na Tabela 4, a Equação (7) proposta ($C_{t,prop}$) é superior às equações (2), (3) e (6).

Figura 6 - Diferenças no comportamento de C_t das Eqs.(2), (3), (6) e (7) (ver Tabela 4)

Figura 7 – Diferenças em % dos C_t das Eqs.(2), (3), (6) e (7) (ver Tabela 4)

7 Conclusões

Foram apresentados nesse estudo, os resultados inéditos de 86 ensaios experimentais efetuados na Universidade de Brasília, em cantoneiras de aço formadas a frio e conectadas por parafusos, com aço COR 420. Observou-se que o modo de falha apresentado em todos os ensaios foi a ruptura da seção líquida. Os espécimes testados tinham abas iguais, abas diferentes, diferentes seções transversais, espessuras de 2,25; 3,35 e 3,75 mm e um número variado de parafusos por seção. Usando regressão múltipla nos resultados experimentais, com as variáveis \bar{x}/L ; b_{cn}/b_c ; b_d/b_c ; t/b_c propôs-se na Equação (7) uma nova expressão para o coeficiente de redução da área líquida $C_{t,prop}$ para cantoneiras feitas em aço brasileiro, COR 420. Na equação proposta, \bar{x} = posição do centro de gravidade da cantoneira em relação à chapa de ligação, L = comprimento total da ligação parafusada, b_{cn} = largura líquida da aba conectada, b_c = largura total da aba conectada, b_d = largura total da aba desconectada, t = espessura das abas. Os resultados das diferenças entre os valores experimentais, $C_{t,exp}$, e aqueles calculados pelas equações (2), (3), (6) e (7), respectivamente, revelam que C_t calculado pela NBR 14762 (2010) é o que mais difere dos valores experimentais, $C_{t,exp}$. Todas as outras equações, em especial a Equação (7), se mostraram satisfatórias aos valores experimentais do coeficiente de redução da área líquida, C_t . A Equação (7) proposta mostra um menor desvio padrão (0.055 e 8.7%) que a NBR-14762 (2010) cujo valor é 0.169 e 34%, a AISI-S100 (2016), cujo valor é 0.066 e 10.4%, e a Equação (6), cujo valor

é 0.057 e 9.4%. A Equação (7) mostra que o valor calculado para $C_{t,prop}$ se aproxima mais dos resultados do $C_{t,exp}$ do que as outras equações testadas. Nota-se ainda que a equação proposta, Equação (7), é bem mais simples de ser usada do que a equação da AISI-S100 (2016), mais prática para uso em projetos com aço fabricado no Brasil. A partir da Equação (7) pode-se observar que as variáveis escolhidas foram adequadamente selecionadas, de modo a contemplar o coeficiente de redução da área líquida " C_t " devido ao fenômeno *shear lag*.

8 Referências bibliográficas

AMERICAN IRON AND STEEL INSTITUTE – AISI. North American specification for the design of cold-formed steel structural members. Washington DC, 2007.

AMERICAN IRON AND STEEL INSTITUTE – AISI. North American specification for the design of cold-formed steel structural members. Washington DC, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, ABNT NBR 14762:2010. Dimensionamento de estruturas de aço constituídas por perfis formados a frio. Rio de Janeiro, 2010.

CHUNG, K. F; LAU L. Experimental investigation on bolted moment connections among cold formed steel members. **Engineering Structures**. 1999;21:898–911.

DE PAULA, V. F. ; BEZERRA, L. M.; MATIAS. W. T.; Efficiency reduction due to shear lag on bolted cold-formed steel angles. J. of Const. Steel Research. University of Brasília, 2008.

HOLCOMB BD, YU WW, Laboube RA. Tensile and bearing capacities of bolted connections. Second summary report. **Civil Engineering Study 95-1**. University of Missouri-Rolla; 1995.

KENNEDY. JB, NEVILLE. AM. Basic statistical methods for engineering and scientists. Harper e Row Publishers; New York ,1986.

KULAK GL,Wu EY. Shear lag in bolted angle tension members. **Journal of Structural Engineering**, ASCE 1997;123:1144–52.

LABOUBE RA, YU WW. Tensile and bearing capacities of bolted connections. **Final summary report. Civil Engineering Study 95-6**. University of Missouri-Rolla; 1995.

MAIOLA CH. Ligações parafusadas em chapas finas e perfis de aço formados a frio. Tese (doutorado). **EESC – USP**. São Carlos, 2004.

SPIEGEL. MR, SCHILLER. JJ, SRINIVASAN RA. Schaum's outline of theory and problems of probability and Statistics. **2nd ed. New York: McGraw-Hill**, New York, 2000.

STATSOFT, Inc. STATISTICA (data analysis software system). Version 6. 2001.

TEH, L. H; GILBERT, B. P. Net section tension capacity of cold-reduced sheet steel angle braces bolted at one leg. *Journal of Structural Engineering, Vol.*, 139 (3).University of Wollongong, Austrália, 2013.

TEH, L. H; GILBERT, B. P. Net section tension capacity of equal angle braces boltedat different legs . *Journal of Structural Engineering*, 06014002. University of Wollongong, Austrália, 2014.

YIP ASM, CHENG JJR. Shear lag in bolted cold-formed steel angles and channels in tension. **Structural engineering report no. 233. Edmonton**: University of Alberta; Canada, 2000.

YU, WW. Cold-formed steel design. **3rd ed. John Wiley e Sons**; New York, 2000.